Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19510, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177543

RESUMO

The disconnect between preclinical and clinical results underscores the imperative for establishing good animal models, then gleaning all available data on efficacy, safety, and potential toxicities associated with a device or drug. Mini pigs are a commonly used animal model for testing orthopedic and dental devices because their skeletons are large enough to accommodate human-sized implants. The challenge comes with the analyses of their hard tissues: current methods are time-consuming, destructive, and largely limited to histological observations made from the analysis of very few tissue sections. We developed and employed cryo-based methods that preserved the microarchitecture and the cellular/molecular integrity of mini pig hard tissues, then demonstrated that the results of these histological, histochemical, immunohistochemical, and dynamic histomorphometric analyses e.g., mineral apposition rates were comparable with similar data from preclinical rodent models. Thus, the ability to assess static and dynamic bone states increases the translational value of mini pig and other large animal model studies. In sum, this method represents logical means to minimize the number of animals in a study while simultaneously maximizing the amount of information collected from each specimen.


Assuntos
Criopreservação/métodos , Crânio/citologia , Manejo de Espécimes/métodos , Animais , Remodelação Óssea , Calcificação Fisiológica , Carboximetilcelulose Sódica , Crioultramicrotomia/métodos , Masculino , Polietilenoglicóis , Sacarose , Suínos , Porco Miniatura
2.
J Orthop Res ; 37(4): 877-886, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30747435

RESUMO

Rotator cuff (RTC) repair outcomes are unsatisfactory due to the poor healing capacity of the tendon bone interface (TBI). In our preceding study, tendon hydrogel (tHG), which is a type I collagen rich gel derived from human tendons, improved biomechanical properties of the TBI in a rat chronic RTC injury model. Here we investigated whether adipose-derived stem cell (ASC)-seeded tHG injection at the repair site would further improve RTC healing. Rats underwent bilateral supraspinatus tendon detachment. Eight weeks later injured supraspinatus tendons were repaired with one of four treatments. In the control group, standard transosseous suture repair was performed. In the ASC, tHG, tHGASC groups, ASC in media, tHG, and ASC-seeded tHG were injected at repair site after transosseous suture repair, respectively. Eight weeks after repair, the TBI was evaluated biomechanically, histologically, and via micro CT. Implanted ASCs were detected in ASC and tHGASC groups 7 weeks after implantation. ACS implantation improved bone morphometry at the supraspinatus insertion on the humerus. Injection of tHG improved biomechanical properties of the repaired TBI. RTC healing in tHGASC group was significantly better than control but statistically equivalent to the tHG group based on biomechanical properties, fibrocartilage area at the TBI, and bone morphometry at the supraspinatus insertion. In a rat RTC chronic injury model, no biomechanical advantage was gained with ASC augmentation of tHG. Clinical Significance: Tendon hydrogel augmentation with adipose derived stem cells does not significantly improve TBI healing over tHG alone in a chronic rotator cuff injury model. © 2019 Orthopaedic Research Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Hidrogéis/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Lesões do Manguito Rotador/terapia , Animais , Humanos , Ratos Sprague-Dawley , Tendões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...